Determinants
Definition and Basic Properties
The determinant is a scalar value that can be calculated from the elements of a square matrix. It provides important information about the matrix, such as whether it is invertible.
Notation
For a matrix A, the determinant is denoted det(A) or |A|.
2×2 Determinant
For a 2×2 matrix $A = \begin{bmatrix} a & b \ c & d \end{bmatrix}$:
- det(A) = ad - bc
3×3 Determinant
For a 3×3 matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$:
det(A) = a₁₁(a₂₂a₃₃ - a₂₃a₃₂) - a₁₂(a₂₁a₃₃ - a₂₃a₃₁) + a₁₃(a₂₁a₃₂ - a₂₂a₃₁)
This can also be computed using the Sarrus rule (diagonals method):
- Extend the matrix by copying the first two columns to the right
- Multiply along the diagonals going down-right and add these products
- Multiply along the diagonals going down-left and subtract these products
n×n Determinant
For larger matrices, determinants can be calculated using:
- Cofactor expansion: Select a row or column and expand along it
- Row/column operations: Transform the matrix to upper triangular form
Properties of Determinants
-
Transpose: det(A) = det(A^T)
-
Scalar multiplication: det(kA) = k^n · det(A) where n is the size of the matrix
-
Product: det(AB) = det(A) · det(B)
-
Inverse: If A is invertible, det(A^(-1)) = 1/det(A)
-
Row/Column operations:
- Swapping two rows/columns multiplies the determinant by -1
- Multiplying a row/column by a scalar k multiplies the determinant by k
- Adding a multiple of one row/column to another doesn’t change the determinant
-
Triangular matrices: For triangular matrices (upper or lower), the determinant is the product of the diagonal elements
- Singular matrices: A matrix is singular (non-invertible) if and only if its determinant is zero
Calculation Methods
Cofactor Expansion (Laplace Expansion)
The determinant can be calculated by expanding along any row or column:
det(A) = Σⱼ (-1)^(i+j) · aᵢⱼ · Mᵢⱼ
Where:
- aᵢⱼ is the element in row i, column j
- Mᵢⱼ is the minor (determinant of the submatrix formed by removing row i and column j)
- (-1)^(i+j) · Mᵢⱼ is the cofactor of aᵢⱼ
Row Reduction (Gaussian Elimination)
- Convert the matrix to upper triangular form using row operations
- The determinant is the product of the diagonal elements, adjusted by the factor (-1)^s where s is the number of row swaps
Special Cases
-
Diagonal matrix: det(diag(d₁, d₂, …, dₙ)) = d₁ · d₂ · … · dₙ
-
Identity matrix: det(I) = 1
-
Zero matrix: det(0) = 0
-
Matrix with a zero row/column: det(A) = 0
-
Matrix with two identical rows/columns: det(A) = 0
-
Matrix with a row/column that’s a linear combination of others: det(A) = 0
Example Calculations
2×2 Determinant
For $A = \begin{bmatrix} 3 & 2 \ 4 & 5 \end{bmatrix}$:
- det(A) = 3×5 - 2×4 = 15 - 8 = 7
3×3 Determinant
For $A = \begin{bmatrix} 3 & 1 & 2 \ -3 & -4 & 6 \ 0 & -3 & 8 \end{bmatrix}$:
Using cofactor expansion along the first row:
- det(A) = 3·det($\begin{bmatrix} -4 & 6 \ -3 & 8 \end{bmatrix}$) - 1·det($\begin{bmatrix} -3 & 6 \ 0 & 8 \end{bmatrix}$) + 2·det($\begin{bmatrix} -3 & -4 \ 0 & -3 \end{bmatrix}$)
- det(A) = 3·(-4·8 - 6·(-3)) - 1·(-3·8 - 6·0) + 2·(-3·(-3) - (-4)·0)
- det(A) = 3·(-32 + 18) - 1·(-24) + 2·(9)
- det(A) = 3·(-14) + 24 + 18
- det(A) = -42 + 24 + 18 = 0
4×4 Determinant
For a 4×4 matrix, it’s often easiest to use row reduction:
- Convert to upper triangular form using Gaussian elimination
- Multiply the diagonal elements
Strategies for Determinant Exercises
-
Choose the easiest expansion path: Look for rows or columns with many zeros
-
Use properties to simplify:
- Factor out common terms from rows/columns
- Add/subtract rows to create zeros
-
Recognize patterns:
- Triangular matrices: product of diagonal elements
- Matrices with repeated rows/columns: determinant is zero
-
For parametric problems:
- Calculate the determinant keeping the parameter(s)
- Analyze when the resulting expression equals zero
Practice Examples
Example 1: Parameter Determinant
For $A = \begin{bmatrix} a & 3a & 2a \ -a & -4a & 6 \ a-1 & 2a & a+1 \end{bmatrix}$:
Factor out a from the first row and -a from the second row: $\begin{bmatrix} a & 3a & 2a \ -a & -4a & 6 \ a-1 & 2a & a+1 \end{bmatrix} = a \cdot \begin{bmatrix} 1 & 3 & 2 \ -1 & -4 & \frac{6}{-a} \ \frac{a-1}{a} & 2 & \frac{a+1}{a} \end{bmatrix}$
The determinant is a³ times the determinant of the new matrix. Continue using cofactor expansion.
Example 2: Vandermonde Determinant
For $A = \begin{bmatrix} 1 & 1 & 1 \ x & y & z \ x^2 & y^2 & z^2 \end{bmatrix}$:
This is a Vandermonde matrix with determinant (z-y)(z-x)(y-x)
Example 3: Using Row Operations
For $\begin{bmatrix} 1 & 3 & -2 & -1 \ 0 & 4 & 2 & 5 \ 3 & 1 & 0 & 2 \ -4 & 6 & -5 & 2 \end{bmatrix}$:
Use row operations to create more zeros and transform the matrix to upper triangular form.
Exercises
Calculate the following determinants:
-
$\begin{vmatrix} 3 & 2 \ 4 & 5 \end{vmatrix}$
-
$\begin{vmatrix} -4 & 6 \ 5 & -1 \end{vmatrix}$
-
$\begin{vmatrix} 0 & -5 \ 4 & 8 \end{vmatrix}$
-
$\begin{vmatrix} 3 & 6 \ 9 & 18 \end{vmatrix}$
-
$\begin{vmatrix} -4 & 1 \ 8 & -2 \end{vmatrix}$
-
$\begin{vmatrix} 3 & 1 & 2 \ -3 & -4 & 6 \ 0 & -3 & 8 \end{vmatrix}$
-
$\begin{vmatrix} 3 & -1 & 2 \ 71 & -47 & 61 \ 6 & -2 & 4 \end{vmatrix}$
-
$\begin{vmatrix} a & 3a & 2a \ -a & -4a & 6 \ a-1 & 2a & a+1 \end{vmatrix}$
-
$\begin{vmatrix} 1 & 1 & 1 \ x & y & z \ x^2 & y^2 & z^2 \end{vmatrix}$
-
$\begin{vmatrix} 1 & 3 & -2 & -1 \ 0 & 4 & 2 & 5 \ 3 & 1 & 0 & 2 \ -4 & 6 & -5 & 2 \end{vmatrix}$
-
$\begin{vmatrix} 1 & 4 & 3 & \frac{1}{2} \ 2 & 1 & 0 & 6 \ -2 & 5 & 0 & -3 \ 4 & \frac{1}{5} & 5 & \frac{2}{3} \end{vmatrix}$
-
$\begin{vmatrix} 1 & 3 & 2 & 5 \ 1 & 4 & -2 & 6 \ 2 & 7 & 0 & 11 \ -41 & 6 & 15 & 0 \end{vmatrix}$
-
$\begin{vmatrix} 1 & 4 & -3 & 2 \ 2 & 1 & 1 & 3 \ -2 & 1 & 0 & -2 \ 1 & 6 & -2 & 3 \end{vmatrix}$
-
$\begin{vmatrix} 1 & 0 & 0 & 0 \ 10 & 1 & 100 & 1000 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{vmatrix}$