Linear transformations
Definition
A linear transformation (or linear map) is a function T: V → W between vector spaces that preserves the operations of vector addition and scalar multiplication. Specifically, for all vectors u, v ∈ V and all scalars c:
- T(u + v) = T(u) + T(v) (Preserves addition)
- T(cu) = cT(u) (Preserves scalar multiplication)
Matrix Representation
Every linear transformation T: ℝⁿ → ℝᵐ can be represented as matrix multiplication by an m×n matrix A:
T(x) = Ax
To find the matrix A of a linear transformation T:
- Apply T to each standard basis vector eᵢ
- The columns of A are the vectors T(eᵢ)
Properties of Linear Transformations
-
Composition: If T: V → W and S: W → U are linear transformations, then their composition S∘T: V → U defined by (S∘T)(v) = S(T(v)) is also a linear transformation.
-
Matrix of composition: If S and T have matrices A and B respectively, then S∘T has matrix AB.
-
Kernel (Null Space): The kernel of T, denoted ker(T) or null(T), is the set of all vectors v in V such that T(v) = 0. It is a subspace of V.
-
Image (Range): The image of T, denoted im(T) or range(T), is the set of all vectors w in W such that w = T(v) for some v in V. It is a subspace of W.
-
Dimension Theorem: For a linear transformation T: V → W:
- dim(ker(T)) + dim(im(T)) = dim(V)
-
Injectivity: T is injective (one-to-one) if and only if ker(T) = {0}.
-
Surjectivity: T is surjective (onto) if and only if im(T) = W.
- Invertibility: T is invertible if and only if it is both injective and surjective.
Finding the Matrix of a Linear Transformation
Example: Function Description to Matrix
For T: ℝ³ → ℝ² defined by T(x,y,z) = (x+2y+3z, 2y+z):
- Apply T to each standard basis vector:
- T(1,0,0) = (1,0)
- T(0,1,0) = (2,2)
- T(0,0,1) = (3,1)
- These vectors form the columns of the matrix: A = $\begin{bmatrix} 1 & 2 & 3 \ 0 & 2 & 1 \end{bmatrix}$
Example: Matrix to Function Description
Given a matrix A = $\begin{bmatrix} 1 & 3 \ -1 & 2 \ 5 & 0 \end{bmatrix}$, the corresponding linear transformation T: ℝ² → ℝ³ is:
T(x,y) = $\begin{bmatrix} 1 & 3 \ -1 & 2 \ 5 & 0 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} x+3y \ -x+2y \ 5x \end{bmatrix}$
Kernel and Image
Finding the Kernel
To find ker(T) for a linear transformation T with matrix A:
- Solve the homogeneous system Ax = 0
- Find the general solution, which gives a parametric description of ker(T)
- Extract a basis for ker(T) from the general solution
Finding the Image
To find im(T) for a linear transformation T with matrix A:
- Determine the pivot columns of A
- The corresponding column vectors of A form a basis for im(T)
- Alternatively, the span of the columns of A equals im(T)
Example: Finding Kernel and Image
For T: ℝ³ → ℝ² with matrix A = $\begin{bmatrix} 1 & 2 & 3 \ 2 & 4 & 6 \end{bmatrix}$:
- Finding ker(T):
-
Set up Ax = 0: $\begin{bmatrix} 1 & 2 & 3 \ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 0 \ 0 \end{bmatrix}$
-
Row reduce the augmented matrix: $\begin{bmatrix} 1 & 2 & 3 & | & 0 \ 2 & 4 & 6 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & | & 0 \ 0 & 0 & 0 & | & 0 \end{bmatrix}$
-
General solution: x = -2y - 3z
-
Parametric form: $\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} -2y - 3z \ y \ z \end{bmatrix} = y\begin{bmatrix} -2 \ 1 \ 0 \end{bmatrix} + z\begin{bmatrix} -3 \ 0 \ 1 \end{bmatrix}$
- Basis for ker(T): ${(-2,1,0), (-3,0,1)}$
- dim(ker(T)) = 2
-
- Finding im(T):
-
The columns of A are $\begin{bmatrix} 1 \ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \ 4 \end{bmatrix}$, $\begin{bmatrix} 3 \ 6 \end{bmatrix}$
-
Row reducing A: $\begin{bmatrix} 1 & 2 & 3 \ 2 & 4 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \ 0 & 0 & 0 \end{bmatrix}$
-
There’s one pivot column (the first)
- Basis for im(T): ${(1,2)}$
- dim(im(T)) = 1
-
- Verify: dim(ker(T)) + dim(im(T)) = 2 + 1 = 3 = dim(ℝ³)
Checking if a Function is a Linear Transformation
A function is a linear transformation if and only if it satisfies these two conditions for all vectors u, v and all scalars c:
- T(u + v) = T(u) + T(v)
- T(cu) = cT(u)
Example: Verification
Is f: ℝ² → ℝ² defined by f(x, y) = (x + y, x - y + 1) a linear transformation?
Check condition 1:
- f((x₁, y₁) + (x₂, y₂)) = f(x₁ + x₂, y₁ + y₂) = ((x₁ + x₂) + (y₁ + y₂), (x₁ + x₂) - (y₁ + y₂) + 1)
-
= (x₁ + y₁ + x₂ + y₂, x₁ - y₁ + x₂ - y₂ + 1)
- f(x₁, y₁) + f(x₂, y₂) = (x₁ + y₁, x₁ - y₁ + 1) + (x₂ + y₂, x₂ - y₂ + 1)
- = (x₁ + y₁ + x₂ + y₂, x₁ - y₁ + 1 + x₂ - y₂ + 1)
- = (x₁ + y₁ + x₂ + y₂, x₁ - y₁ + x₂ - y₂ + 2)
These are not equal (due to the constant term 1), so f is not a linear transformation.
Special Types of Linear Transformations
1. Identity Transformation
The identity transformation I: V → V maps each vector to itself: I(v) = v
- Matrix representation: the identity matrix I
2. Zero Transformation
The zero transformation 0: V → W maps every vector to the zero vector: 0(v) = 0
- Matrix representation: the zero matrix 0
3. Projection
A projection maps vectors onto a subspace along a specific direction
- Example: Projection onto the x-axis in ℝ²: P(x,y) = (x,0)
- Matrix: $\begin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}$
4. Rotation
A rotation transforms vectors by rotating them around the origin
- Example: 90° counterclockwise rotation in ℝ²: R(x,y) = (-y,x)
- Matrix: $\begin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}$
5. Reflection
A reflection transforms vectors by reflecting them across a line or plane
- Example: Reflection across the x-axis in ℝ²: S(x,y) = (x,-y)
- Matrix: $\begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$
6. Scaling
A scaling transformation stretches or compresses vectors along coordinate axes
- Example: Scaling by factors of 2 and 3 in ℝ²: T(x,y) = (2x,3y)
- Matrix: $\begin{bmatrix} 2 & 0 \ 0 & 3 \end{bmatrix}$
7. Shear
A shear transformation preserves certain lines while shifting others
- Example: Horizontal shear in ℝ²: H(x,y) = (x+ky,y) where k is the shear factor
- Matrix: $\begin{bmatrix} 1 & k \ 0 & 1 \end{bmatrix}$
Solving Exercises on Linear Transformations
Exercise Type 1: Finding the Matrix of a Linear Transformation
- Apply the transformation to each standard basis vector
- The results become the columns of the matrix
Example: T: ℝ³ → ℝ² defined by T(x,y,z) = (z-x, y+z)
- T(1,0,0) = (-1,0)
- T(0,1,0) = (0,1)
- T(0,0,1) = (1,1)
- Matrix: $\begin{bmatrix} -1 & 0 & 1 \ 0 & 1 & 1 \end{bmatrix}$
Exercise Type 2: Verifying Linear Transformations
- Check if T(u+v) = T(u) + T(v) for arbitrary vectors u and v
- Check if T(cu) = cT(u) for arbitrary vector u and scalar c
- If both conditions hold, the function is a linear transformation
Exercise Type 3: Finding Kernel and Image
- Write the transformation as a matrix A
- Find ker(T) by solving Ax = 0
- Find im(T) by finding the span of the columns of A
- Find bases for both subspaces
- Verify the dimension theorem: dim(ker(T)) + dim(im(T)) = dim(domain)
Exercise Type 4: Analyzing Properties
- Determine if the transformation is injective (ker(T) = {0})
- Determine if the transformation is surjective (im(T) = codomain)
- Determine if the transformation is invertible (both injective and surjective)
Common Mistakes to Avoid
- Forgetting to check both linearity conditions when verifying a linear transformation
- Confusing the domain and codomain dimensions when setting up the matrix
- Incorrectly applying the transformation to the standard basis vectors
- Errors in row reduction when finding the kernel
- Not finding a basis for the image, but just describing it as a span
Connection to Other Topics
Linear transformations connect to many other topics in linear algebra:
- Matrix Operations: Composition of linear transformations corresponds to matrix multiplication
- Eigenvalues/Eigenvectors: Eigenspaces are invariant subspaces under a linear transformation
- Change of Basis: A change of basis can be viewed as a linear transformation
- Diagonalization: A linear transformation is diagonalizable if there is a basis of eigenvectors
-
Singular Value Decomposition: Represents a linear transformation in terms of simple stretching and rotating operations
Exercises
-
Given the linear map $F: \mathbb{R}^3 \to \mathbb{R}^4$ where $F(x,y,z) = (x+2y+3z+4t,2y+z+t,(x+4y+z+2t,y))$, find:
(a) the matrix associated to $F$,
(b) kernel of $F$ and image of $F$.
-
Given the linear map $F: \mathbb{R}^4 \to \mathbb{R}^4$ where $F(x,y,z,t) = (x+y,x-3z,x-3z,t)$, find:
(a) the matrix associated to $F$,
(b) kernel of $F$ and image of $F$.
-
Determine the image of the linear mapping $F$ from $\mathbb{R}^3$ in itself where $F(x,y,z) = (2x,0,y-x)$.
-
Determine the image of the linear mapping $F$ from $\mathbb{R}^3$ in itself where $F(x,y,z) = (x-y,y-x,z+y-x)$.
-
Given the linear map $F: \mathbb{R}^4 \to \mathbb{R}^4$ where $F(x,y,z,t) = (x+y,x-3z,x-3z,t)$, find:
(a) the matrix associated to $F$,
(b) kernel of $F$ and image of $F$.
- Check if the following functions are linear transformations:
- $f: \mathbb{R}^2 \to \mathbb{R}^3$ where $f(x, y) = (x + y, -x + 3y, 2x - y)$
- $f: \mathbb{R}^2 \to \mathbb{R}^2$ where $f(x, y) = (x + 3y, x - y + 1)$
- $f: \mathbb{R}^3 \to \mathbb{R}^3$ where $f(x, y, z) = (x + 2y - z, -x + 5y - z, 3x + 4y)$
- $f: \mathbb{R}^3 \to \mathbb{R}^3$ where $f(x, y, z) = (x - z, 2x + y - z, 3x + 4y - 2z)$
- Find the matrix associated with the linear transformation:
- $f: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $f(x, y, z) = (z - x, y + z)$
- Find the kernel and image of the following linear transformations:
- $f: \mathbb{R}^2 \to \mathbb{R}^2$ where $f(x, y) = (2x + 4y, -3x + 2y)$
- $f: \mathbb{R}^2 \to \mathbb{R}^2$ where $f(x, y) = (2x + 3y, 4x + 6y)$
- $f: \mathbb{R}^3 \to \mathbb{R}^3$ where $f(x, y, z) = (x + y + z, 5x + 4y - z, 3x + 2y - 3z)$