Diagonalization
Definition and Concept
A square matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix D such that:
P⁻¹AP = D
- The diagonal entries of D are the eigenvalues of A
- The columns of P are the corresponding eigenvectors of A
- We say that P diagonalizes A
Criteria for Diagonalizability
A square n×n matrix A is diagonalizable if and only if one of the following equivalent conditions is met:
- A has n linearly independent eigenvectors
- For each eigenvalue λ of A, the geometric multiplicity equals the algebraic multiplicity
- The sum of the dimensions of all eigenspaces equals n
Diagonalization Process
Step 1: Find the Eigenvalues
- Compute the characteristic polynomial: det(A - λI) = 0
- Solve this polynomial equation to find all eigenvalues λ₁, λ₂, …, λₙ
- Note the algebraic multiplicity of each eigenvalue (how many times it appears as a root)
Step 2: Find the Eigenvectors
- For each eigenvalue λᵢ, solve the homogeneous system (A - λᵢI)v = 0
- Find a basis for the null space of (A - λᵢI), which forms a basis for the eigenspace
- Note the geometric multiplicity (dimension of the eigenspace)
Step 3: Check Diagonalizability
- Compare the algebraic and geometric multiplicities for each eigenvalue
- If they match for all eigenvalues, the matrix is diagonalizable
- Additionally, check that the total number of linearly independent eigenvectors equals n
Step 4: Construct the Matrix P
- Form P by using the eigenvectors as columns
- The order of eigenvectors should match the order of eigenvalues in D
Step 5: Form the Diagonal Matrix D
- D = diag(λ₁, λ₂, …, λₙ)
- Each eigenvalue appears on the diagonal as many times as its algebraic multiplicity
Step 6: Verify
- Compute P⁻¹AP and confirm it equals D
Examples
Example 1: 2×2 Matrix
For A = $\begin{bmatrix} 3 & 8 \ 2 & 3 \end{bmatrix}$:
Step 1: Find eigenvalues
- Characteristic equation: det(A - λI) = (3-λ)² - 16 = 0
- Solving: λ² - 6λ + 9 - 16 = 0 → λ² - 6λ - 7 = 0
- Eigenvalues: λ₁ = 7, λ₂ = -1
Step 2: Find eigenvectors
- For λ₁ = 7:
- (A - 7I)v = $\begin{bmatrix} -4 & 8 \ 2 & -4 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \end{bmatrix}$
- This gives -4v₁ + 8v₂ = 0, so v₁ = 2v₂
- Let v₂ = 1, then v₁ = 2
- Eigenvector: v₁ = $\begin{bmatrix} 2 \ 1 \end{bmatrix}$
- For λ₂ = -1:
- (A + I)v = $\begin{bmatrix} 4 & 8 \ 2 & 4 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \end{bmatrix}$
- This gives 4v₁ + 8v₂ = 0, so v₁ = -2v₂
- Let v₂ = 1, then v₁ = -2
- Eigenvector: v₂ = $\begin{bmatrix} -2 \ 1 \end{bmatrix}$
Step 3: Check diagonalizability
- We found 2 linearly independent eigenvectors for a 2×2 matrix
- The matrix is diagonalizable
Step 4: Construct P
- P = $\begin{bmatrix} 2 & -2 \ 1 & 1 \end{bmatrix}$
Step 5: Form D
- D = $\begin{bmatrix} 7 & 0 \ 0 & -1 \end{bmatrix}$
Step 6: Verify
- Calculate P⁻¹AP = D
Example 2: 3×3 Matrix with Repeated Eigenvalue
For A = $\begin{bmatrix} 2 & 0 & 0 \ 0 & 1 & -1 \ 0 & -1 & 1 \end{bmatrix}$:
Step 1: Find eigenvalues
- Characteristic equation: det(A - λI) = (2-λ)[(1-λ)² - 1] = 0
- Eigenvalues: λ₁ = 2, λ₂ = 0, λ₃ = 2
Step 2: Find eigenvectors
- For λ₁ = 2:
- (A - 2I)v = $\begin{bmatrix} 0 & 0 & 0 \ 0 & -1 & -1 \ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$
- This gives v₂ + v₃ = 0, so v₃ = -v₂
- Let v₁ = 1, v₂ = 0, v₃ = 0
- First eigenvector: v₁ = $\begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$
- λ₁ = 2 has algebraic multiplicity 2, so we need another linearly independent eigenvector:
- Let v₁ = 0, v₂ = 1, v₃ = -1
- Second eigenvector: v₂ = $\begin{bmatrix} 0 \ 1 \ -1 \end{bmatrix}$
- For λ₂ = 0:
- (A)v = $\begin{bmatrix} 2 & 0 & 0 \ 0 & 1 & -1 \ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$
- This gives 2v₁ = 0, v₂ - v₃ = 0, -v₂ + v₃ = 0
- So v₁ = 0, v₂ = v₃
- Let v₂ = v₃ = 1
- Eigenvector: v₃ = $\begin{bmatrix} 0 \ 1 \ 1 \end{bmatrix}$
Step 3: Check diagonalizability
- We found 3 linearly independent eigenvectors for a 3×3 matrix
- The matrix is diagonalizable
Step 4 & 5: Construct P and D
- P = $\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & -1 & 1 \end{bmatrix}$
- D = $\begin{bmatrix} 2 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 0 \end{bmatrix}$
Special Cases and Properties
1. Symmetric Matrices
If A is symmetric (A = A^T):
- A is always diagonalizable
- All eigenvalues are real
- Eigenvectors corresponding to distinct eigenvalues are orthogonal
- A complete set of orthogonal eigenvectors always exists
- P can be chosen to be orthogonal (P^T = P^(-1)), resulting in an orthogonal diagonalization
2. Triangular Matrices
For a triangular matrix:
- The eigenvalues are the diagonal entries
- It is diagonalizable if and only if all eigenvalues have geometric multiplicity equal to their algebraic multiplicity
3. Defective Matrices
A matrix is defective if it is not diagonalizable:
- This happens when there are not enough linearly independent eigenvectors
- For some eigenvalue, the geometric multiplicity is less than the algebraic multiplicity
- This requires more advanced techniques like Jordan canonical form
Applications of Diagonalization
-
Matrix Powers: If A = PDP^(-1), then A^n = PD^nP^(-1)
-
Solving Systems of Differential Equations: ẋ = Ax can be solved using diagonalization
-
Spectral Decomposition: A = ∑λᵢvᵢvᵢ^T (for symmetric matrices)
-
Computing Matrix Functions: f(A) = Pf(D)P^(-1)
Common Techniques and Tricks
1. Recognizing Diagonalizability
- If a matrix has n distinct eigenvalues, it is diagonalizable
- If a matrix is symmetric, it is diagonalizable
- If the characteristic polynomial splits into linear factors and the geometric multiplicity equals algebraic multiplicity for each eigenvalue, the matrix is diagonalizable
2. Dealing with Repeated Eigenvalues
- For an eigenvalue λ with algebraic multiplicity m, check if the null space of (A - λI) has dimension m
- If dimension < m, the matrix is not diagonalizable
- To find multiple linearly independent eigenvectors for the same eigenvalue, solve (A - λI)v = 0 and find a basis for the null space
3. Verification Short-cuts
- To verify diagonalization, it’s often easier to check AP = PD instead of P^(-1)AP = D
- This avoids having to compute P^(-1)
Solving Diagonalization Exercises
Strategy 1: For 2×2 Matrices
- Calculate the determinant and trace to find eigenvalues quickly:
- λ₁ + λ₂ = tr(A)
- λ₁ × λ₂ = det(A)
- Solve x² - tr(A)x + det(A) = 0
-
Find eigenvectors directly from (A - λI)v = 0
- Form P and D, verify AP = PD
Strategy 2: Exploiting Special Structures
- For matrices with special structures:
- Symmetric: use orthogonality properties
- Triangular: easy eigenvalues from diagonal
- Block diagonal: work with each block separately
- Look for patterns that make calculations easier
Strategy 3: Checking Diagonalizability Directly
- Compute the rank of (A - λI) for each eigenvalue λ
- Compare n - rank(A - λI) with the algebraic multiplicity of λ
- If they’re equal for all eigenvalues, A is diagonalizable
Exercises
-
Consider \(A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}\) Establish whether $A$ is diagonalizable. If yes, find an invertible matrix $P \in \mathbb{R}^{3 \times 3}$ and a diagonal matrix $D \in \mathbb{R}^{3 \times 3}$ such that $P^{-1}AP = D$.
-
Consider \(A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}\) Establish whether $A$ is diagonalizable. If yes, find an invertible matrix $P \in \mathbb{R}^{3 \times 3}$ and a diagonal matrix $D \in \mathbb{R}^{3 \times 3}$ such that $P^{-1}AP = D$.
-
Consider \(A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}\) Establish whether $A$ is diagonalizable. If yes, find an invertible matrix $P \in \mathbb{R}^{3 \times 3}$ and a diagonal matrix $D \in \mathbb{R}^{3 \times 3}$ such that $P^{-1}AP = D$.
- Check if the following matrices $A_i$ are diagonalizable over $\mathbb{R}$ and, if they exist, find for each $A_i$ a diagonal matrix $D$ and an invertible matrix $C$ such that $C^{-1}A_iC = D$:
- $A_1 = \begin{pmatrix} 3 & 8 \ 2 & 3 \end{pmatrix}$
- $A_2 = \begin{pmatrix} 1 & -3 \ 5 & 4 \end{pmatrix}$
- $A_3 = \begin{pmatrix} 1 & 0 \ 5 & 3 \end{pmatrix}$
- $A_4 = \begin{pmatrix} 1 & -3 & 3 \ 3 & -5 & 3 \ 6 & -6 & 4 \end{pmatrix}$
- $A_5 = \begin{pmatrix} 2 & 1 & 0 \ 0 & 1 & -1 \ 0 & 2 & 4 \end{pmatrix}$
- Find the eigenvalues of the following matrix: $A = \begin{pmatrix} 2 & 1 & 0 \ 0 & 1 & -1 \ 0 & 2 & 4 \end{pmatrix}$