Diagonalization

Definition and Concept

A square matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix D such that:

P⁻¹AP = D

  • The diagonal entries of D are the eigenvalues of A
  • The columns of P are the corresponding eigenvectors of A
  • We say that P diagonalizes A

Criteria for Diagonalizability

A square n×n matrix A is diagonalizable if and only if one of the following equivalent conditions is met:

  1. A has n linearly independent eigenvectors
  2. For each eigenvalue λ of A, the geometric multiplicity equals the algebraic multiplicity
  3. The sum of the dimensions of all eigenspaces equals n

Diagonalization Process

Step 1: Find the Eigenvalues

  • Compute the characteristic polynomial: det(A - λI) = 0
  • Solve this polynomial equation to find all eigenvalues λ₁, λ₂, …, λₙ
  • Note the algebraic multiplicity of each eigenvalue (how many times it appears as a root)

Step 2: Find the Eigenvectors

  • For each eigenvalue λᵢ, solve the homogeneous system (A - λᵢI)v = 0
  • Find a basis for the null space of (A - λᵢI), which forms a basis for the eigenspace
  • Note the geometric multiplicity (dimension of the eigenspace)

Step 3: Check Diagonalizability

  • Compare the algebraic and geometric multiplicities for each eigenvalue
  • If they match for all eigenvalues, the matrix is diagonalizable
  • Additionally, check that the total number of linearly independent eigenvectors equals n

Step 4: Construct the Matrix P

  • Form P by using the eigenvectors as columns
  • The order of eigenvectors should match the order of eigenvalues in D

Step 5: Form the Diagonal Matrix D

  • D = diag(λ₁, λ₂, …, λₙ)
  • Each eigenvalue appears on the diagonal as many times as its algebraic multiplicity

Step 6: Verify

  • Compute P⁻¹AP and confirm it equals D

Examples

Example 1: 2×2 Matrix

For A = $\begin{bmatrix} 3 & 8 \ 2 & 3 \end{bmatrix}$:

Step 1: Find eigenvalues

  • Characteristic equation: det(A - λI) = (3-λ)² - 16 = 0
  • Solving: λ² - 6λ + 9 - 16 = 0 → λ² - 6λ - 7 = 0
  • Eigenvalues: λ₁ = 7, λ₂ = -1

Step 2: Find eigenvectors

  • For λ₁ = 7:
    • (A - 7I)v = $\begin{bmatrix} -4 & 8 \ 2 & -4 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \end{bmatrix}$
    • This gives -4v₁ + 8v₂ = 0, so v₁ = 2v₂
    • Let v₂ = 1, then v₁ = 2
    • Eigenvector: v₁ = $\begin{bmatrix} 2 \ 1 \end{bmatrix}$
  • For λ₂ = -1:
    • (A + I)v = $\begin{bmatrix} 4 & 8 \ 2 & 4 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \end{bmatrix}$
    • This gives 4v₁ + 8v₂ = 0, so v₁ = -2v₂
    • Let v₂ = 1, then v₁ = -2
    • Eigenvector: v₂ = $\begin{bmatrix} -2 \ 1 \end{bmatrix}$

Step 3: Check diagonalizability

  • We found 2 linearly independent eigenvectors for a 2×2 matrix
  • The matrix is diagonalizable

Step 4: Construct P

  • P = $\begin{bmatrix} 2 & -2 \ 1 & 1 \end{bmatrix}$

Step 5: Form D

  • D = $\begin{bmatrix} 7 & 0 \ 0 & -1 \end{bmatrix}$

Step 6: Verify

  • Calculate P⁻¹AP = D

Example 2: 3×3 Matrix with Repeated Eigenvalue

For A = $\begin{bmatrix} 2 & 0 & 0 \ 0 & 1 & -1 \ 0 & -1 & 1 \end{bmatrix}$:

Step 1: Find eigenvalues

  • Characteristic equation: det(A - λI) = (2-λ)[(1-λ)² - 1] = 0
  • Eigenvalues: λ₁ = 2, λ₂ = 0, λ₃ = 2

Step 2: Find eigenvectors

  • For λ₁ = 2:
    • (A - 2I)v = $\begin{bmatrix} 0 & 0 & 0 \ 0 & -1 & -1 \ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$
    • This gives v₂ + v₃ = 0, so v₃ = -v₂
    • Let v₁ = 1, v₂ = 0, v₃ = 0
    • First eigenvector: v₁ = $\begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$
  • λ₁ = 2 has algebraic multiplicity 2, so we need another linearly independent eigenvector:
    • Let v₁ = 0, v₂ = 1, v₃ = -1
    • Second eigenvector: v₂ = $\begin{bmatrix} 0 \ 1 \ -1 \end{bmatrix}$
  • For λ₂ = 0:
    • (A)v = $\begin{bmatrix} 2 & 0 & 0 \ 0 & 1 & -1 \ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$
    • This gives 2v₁ = 0, v₂ - v₃ = 0, -v₂ + v₃ = 0
    • So v₁ = 0, v₂ = v₃
    • Let v₂ = v₃ = 1
    • Eigenvector: v₃ = $\begin{bmatrix} 0 \ 1 \ 1 \end{bmatrix}$

Step 3: Check diagonalizability

  • We found 3 linearly independent eigenvectors for a 3×3 matrix
  • The matrix is diagonalizable

Step 4 & 5: Construct P and D

  • P = $\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & -1 & 1 \end{bmatrix}$
  • D = $\begin{bmatrix} 2 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 0 \end{bmatrix}$

Special Cases and Properties

1. Symmetric Matrices

If A is symmetric (A = A^T):

  • A is always diagonalizable
  • All eigenvalues are real
  • Eigenvectors corresponding to distinct eigenvalues are orthogonal
  • A complete set of orthogonal eigenvectors always exists
  • P can be chosen to be orthogonal (P^T = P^(-1)), resulting in an orthogonal diagonalization

2. Triangular Matrices

For a triangular matrix:

  • The eigenvalues are the diagonal entries
  • It is diagonalizable if and only if all eigenvalues have geometric multiplicity equal to their algebraic multiplicity

3. Defective Matrices

A matrix is defective if it is not diagonalizable:

  • This happens when there are not enough linearly independent eigenvectors
  • For some eigenvalue, the geometric multiplicity is less than the algebraic multiplicity
  • This requires more advanced techniques like Jordan canonical form

Applications of Diagonalization

  1. Matrix Powers: If A = PDP^(-1), then A^n = PD^nP^(-1)

  2. Solving Systems of Differential Equations: ẋ = Ax can be solved using diagonalization

  3. Spectral Decomposition: A = ∑λᵢvᵢvᵢ^T (for symmetric matrices)

  4. Computing Matrix Functions: f(A) = Pf(D)P^(-1)

Common Techniques and Tricks

1. Recognizing Diagonalizability

  • If a matrix has n distinct eigenvalues, it is diagonalizable
  • If a matrix is symmetric, it is diagonalizable
  • If the characteristic polynomial splits into linear factors and the geometric multiplicity equals algebraic multiplicity for each eigenvalue, the matrix is diagonalizable

2. Dealing with Repeated Eigenvalues

  • For an eigenvalue λ with algebraic multiplicity m, check if the null space of (A - λI) has dimension m
  • If dimension < m, the matrix is not diagonalizable
  • To find multiple linearly independent eigenvectors for the same eigenvalue, solve (A - λI)v = 0 and find a basis for the null space

3. Verification Short-cuts

  • To verify diagonalization, it’s often easier to check AP = PD instead of P^(-1)AP = D
  • This avoids having to compute P^(-1)

Solving Diagonalization Exercises

Strategy 1: For 2×2 Matrices

  1. Calculate the determinant and trace to find eigenvalues quickly:
    • λ₁ + λ₂ = tr(A)
    • λ₁ × λ₂ = det(A)
    • Solve x² - tr(A)x + det(A) = 0
  2. Find eigenvectors directly from (A - λI)v = 0

  3. Form P and D, verify AP = PD

Strategy 2: Exploiting Special Structures

  1. For matrices with special structures:
    • Symmetric: use orthogonality properties
    • Triangular: easy eigenvalues from diagonal
    • Block diagonal: work with each block separately
  2. Look for patterns that make calculations easier

Strategy 3: Checking Diagonalizability Directly

  1. Compute the rank of (A - λI) for each eigenvalue λ
  2. Compare n - rank(A - λI) with the algebraic multiplicity of λ
  3. If they’re equal for all eigenvalues, A is diagonalizable

Exercises

  1. Consider \(A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}\) Establish whether $A$ is diagonalizable. If yes, find an invertible matrix $P \in \mathbb{R}^{3 \times 3}$ and a diagonal matrix $D \in \mathbb{R}^{3 \times 3}$ such that $P^{-1}AP = D$.

  2. Consider \(A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}\) Establish whether $A$ is diagonalizable. If yes, find an invertible matrix $P \in \mathbb{R}^{3 \times 3}$ and a diagonal matrix $D \in \mathbb{R}^{3 \times 3}$ such that $P^{-1}AP = D$.

  3. Consider \(A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}\) Establish whether $A$ is diagonalizable. If yes, find an invertible matrix $P \in \mathbb{R}^{3 \times 3}$ and a diagonal matrix $D \in \mathbb{R}^{3 \times 3}$ such that $P^{-1}AP = D$.

  4. Check if the following matrices $A_i$ are diagonalizable over $\mathbb{R}$ and, if they exist, find for each $A_i$ a diagonal matrix $D$ and an invertible matrix $C$ such that $C^{-1}A_iC = D$:
    • $A_1 = \begin{pmatrix} 3 & 8 \ 2 & 3 \end{pmatrix}$
    • $A_2 = \begin{pmatrix} 1 & -3 \ 5 & 4 \end{pmatrix}$
    • $A_3 = \begin{pmatrix} 1 & 0 \ 5 & 3 \end{pmatrix}$
    • $A_4 = \begin{pmatrix} 1 & -3 & 3 \ 3 & -5 & 3 \ 6 & -6 & 4 \end{pmatrix}$
    • $A_5 = \begin{pmatrix} 2 & 1 & 0 \ 0 & 1 & -1 \ 0 & 2 & 4 \end{pmatrix}$
  5. Find the eigenvalues of the following matrix: $A = \begin{pmatrix} 2 & 1 & 0 \ 0 & 1 & -1 \ 0 & 2 & 4 \end{pmatrix}$