Improper integrals
Definition and Types
Improper integrals are definite integrals that involve either:
- Infinite limits of integration, or
- An integrand that becomes infinite within the limits of integration
Type 1: Infinite Limits of Integration
Case 1: Integration to Infinity
\[\int_a^{\infty} f(x) \, dx = \lim_{R \to \infty} \int_a^{R} f(x) \, dx\]Case 2: Integration from Negative Infinity
\[\int_{-\infty}^{a} f(x) \, dx = \lim_{R \to \infty} \int_{-R}^{a} f(x) \, dx\]Case 3: Integration over the Entire Real Line
\(\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{a} f(x) \, dx + \int_a^{\infty} f(x) \, dx\) for any value of $a$ where $f$ is defined.
Type 2: Integrand with a Vertical Asymptote
Case 1: Asymptote at the Lower Limit
\(\int_a^{b} f(x) \, dx = \lim_{\epsilon \to 0^+} \int_{a+\epsilon}^{b} f(x) \, dx\) where $f$ has a vertical asymptote at $x = a$.
Case 2: Asymptote at the Upper Limit
\(\int_a^{b} f(x) \, dx = \lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \, dx\) where $f$ has a vertical asymptote at $x = b$.
Case 3: Asymptote at an Interior Point
\(\int_a^{b} f(x) \, dx = \int_a^{c} f(x) \, dx + \int_c^{b} f(x) \, dx = \lim_{\epsilon \to 0^+} \left[ \int_a^{c-\epsilon} f(x) \, dx + \int_{c+\epsilon}^{b} f(x) \, dx \right]\) where $f$ has a vertical asymptote at $x = c$ with $a < c < b$.
Convergence and Divergence
Definition
- An improper integral converges if the corresponding limit exists and is finite.
- An improper integral diverges if the limit doesn’t exist or is infinite.
Convergence Theorems
Comparison Test
If $0 \leq f(x) \leq g(x)$ for all $x \geq a$, then:
- If $\int_a^{\infty} g(x) \, dx$ converges, then $\int_a^{\infty} f(x) \, dx$ also converges.
- If $\int_a^{\infty} f(x) \, dx$ diverges, then $\int_a^{\infty} g(x) \, dx$ also diverges.
Limit Comparison Test
If $f(x) \geq 0$, $g(x) > 0$ for all $x \geq a$, and $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$ where $0 < L < \infty$, then:
- $\int_a^{\infty} f(x) \, dx$ and $\int_a^{\infty} g(x) \, dx$ both converge or both diverge.
p-Test (for Power Functions)
For $p \in \mathbb{R}$:
- $\int_1^{\infty} \frac{1}{x^p} \, dx$ converges if $p > 1$
- $\int_1^{\infty} \frac{1}{x^p} \, dx$ diverges if $p \leq 1$
For integrals with a vertical asymptote at $x = a$:
- $\int_a^{b} \frac{1}{(x-a)^p} \, dx$ converges if $p < 1$
- $\int_a^{b} \frac{1}{(x-a)^p} \, dx$ diverges if $p \geq 1$
Absolute Convergence
If $\int_a^{\infty} | f(x) | \, dx$ converges, then $\int_a^{\infty} f(x) \, dx$ also converges. |
Conditional Convergence
An integral $\int_a^{\infty} f(x) \, dx$ is conditionally convergent if it converges but $\int_a^{\infty} | f(x) | \, dx$ diverges. |
Methods for Evaluating Improper Integrals
Direct Evaluation Method
- Replace the improper integral with the appropriate limit
- Find the antiderivative
- Evaluate the limit
For Type 1 (Infinite Limits)
\(\int_a^{\infty} f(x) \, dx = \lim_{R \to \infty} \left[ F(R) - F(a) \right]\) where $F$ is an antiderivative of $f$.
For Type 2 (Vertical Asymptotes)
\(\int_a^{b} f(x) \, dx = \lim_{\epsilon \to 0^+} \left[ F(b) - F(a+\epsilon) \right]\) where $f$ has an asymptote at $x = a$.
Comparison Test for Non-Negative Functions
- Find a simpler function $g(x)$ that bounds $f(x)$
- Determine if the simpler integral $\int g(x) \, dx$ converges or diverges
- Apply the comparison test to draw conclusions about $\int f(x) \, dx$
Asymptotic Comparison
For positive functions $f(x)$ and $g(x)$, if $f(x) \sim g(x)$ as $x \to \infty$ (meaning $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$), then:
- $\int_a^{\infty} f(x) \, dx$ and $\int_a^{\infty} g(x) \, dx$ both converge or both diverge.
Common Improper Integrals
Standard Convergent Improper Integrals
- $\int_0^{\infty} e^{-x} \, dx = 1$
- $\int_0^{\infty} e^{-ax} \, dx = \frac{1}{a}$ for $a > 0$
- $\int_1^{\infty} \frac{1}{x^p} \, dx = \frac{1}{p-1}$ for $p > 1$
- $\int_0^{\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$
- $\int_0^{\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}$
Standard Divergent Improper Integrals
- $\int_1^{\infty} \frac{1}{x} \, dx$ (diverges logarithmically)
- $\int_0^1 \frac{1}{x} \, dx$ (diverges logarithmically)
- $\int_0^1 \frac{1}{x^p} \, dx$ for $p \geq 1$
- $\int_0^{\infty} \sin x \, dx$ (oscillates)
- $\int_0^{\infty} \cos x \, dx$ (oscillates)
Worked Examples
Example 1: Infinite Upper Limit
Determine if $\int_{4}^{+\infty} \frac{x+1}{x^2(x-3)} \, dx$ converges.
Solution: Step 1: Decompose into partial fractions \(\frac{x+1}{x^2(x-3)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-3}\)
Solving for coefficients (by multiplying both sides by $x^2(x-3)$ and comparing): \(x+1 = Ax(x-3) + B(x-3) + Cx^2\)
Evaluating at various points:
- At $x = 0$: $1 = -3B$, so $B = -\frac{1}{3}$
- At $x = 3$: $4 = 9C$, so $C = \frac{4}{9}$
Comparing coefficients of $x^2$: $0 = A + C$, so $A = -C = -\frac{4}{9}$
Step 2: Check each term for convergence \(\int_{4}^{+\infty} \frac{x+1}{x^2(x-3)} \, dx = \int_{4}^{+\infty} \left( \frac{-4/9}{x} + \frac{-1/3}{x^2} + \frac{4/9}{x-3} \right) \, dx\)
For $\int_{4}^{+\infty} \frac{1}{x} \, dx$: This diverges by the p-test (p = 1).
Since one term diverges, the entire integral diverges.
Example 2: Convergent Integral with Infinite Limit
Establish if $\int_{1}^{+\infty} \frac{x - \arctan x}{x^3} \, dx$ converges using asymptotic comparison.
Solution: Step 1: Analyze the asymptotic behavior As $x \to \infty$, $\arctan x \to \frac{\pi}{2}$, so: \(\frac{x - \arctan x}{x^3} \sim \frac{x - \frac{\pi}{2}}{x^3} \sim \frac{x}{x^3} = \frac{1}{x^2}\)
Step 2: Apply the p-test $\int_{1}^{+\infty} \frac{1}{x^2} \, dx$ converges since $p = 2 > 1$.
Step 3: Verify using limit comparison test \(\lim_{x \to \infty} \frac{x - \arctan x}{x^3} \cdot x^2 = \lim_{x \to \infty} \frac{x - \arctan x}{x}\)
Using L’Hôpital’s rule: \(\lim_{x \to \infty} \frac{x - \arctan x}{x} = \lim_{x \to \infty} \left(1 - \frac{\arctan x}{x}\right) = 1 - \lim_{x \to \infty} \frac{\arctan x}{x}\)
Since $\lim_{x \to \infty} \arctan x = \frac{\pi}{2}$, we get: \(\lim_{x \to \infty} \frac{\arctan x}{x} = \lim_{x \to \infty} \frac{\frac{\pi}{2}}{x} = 0\)
Therefore: \(\lim_{x \to \infty} \frac{x - \arctan x}{x} = 1 - 0 = 1\)
By the limit comparison test, since this limit is finite and positive, and $\int_{1}^{+\infty} \frac{1}{x^2} \, dx$ converges, $\int_{1}^{+\infty} \frac{x - \arctan x}{x^3} \, dx$ also converges.
Example 3: Integral with Vertical Asymptote
Establish if $\int_0^1 \frac{dx}{e^{\sqrt{x}}-1}$ converges.
Solution: Step 1: Identify the behavior near the critical point As $x \to 0^+$, $\sqrt{x} \to 0$, and $e^{\sqrt{x}} \to 1$. Using Taylor series: $e^{\sqrt{x}} - 1 \approx \sqrt{x} + \frac{x}{2} + \ldots \approx \sqrt{x}$ for small $x$.
Step 2: Compare with a known function \(\frac{1}{e^{\sqrt{x}}-1} \sim \frac{1}{\sqrt{x}}\)
Step 3: Apply the p-test for vertical asymptotes $\int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 x^{-1/2} \, dx$ converges since $p = 1/2 < 1$.
Step 4: Verify using limit comparison test \(\lim_{x \to 0^+} \frac{\frac{1}{e^{\sqrt{x}}-1}}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} \frac{\sqrt{x}}{e^{\sqrt{x}}-1}\)
Using L’Hôpital’s rule: \(\lim_{x \to 0^+} \frac{\sqrt{x}}{e^{\sqrt{x}}-1} = \lim_{x \to 0^+} \frac{\frac{1}{2}x^{-1/2}}{e^{\sqrt{x}} \cdot \frac{1}{2}x^{-1/2}} = \lim_{x \to 0^+} \frac{1}{e^{\sqrt{x}}} = 1\)
By the limit comparison test, since this limit is finite and positive, and $\int_0^1 \frac{1}{\sqrt{x}} \, dx$ converges, $\int_0^1 \frac{dx}{e^{\sqrt{x}}-1}$ also converges.
Example 4: Logarithmic Integral
Establish if $\int_0^1 \ln x \, dx$ converges.
Solution: Step 1: Identify the behavior near x = 0 As $x \to 0^+$, $\ln x \to -\infty$, so this is an improper integral with a vertical asymptote at the lower limit.
Step 2: Evaluate using the definition $\int_0^1 \ln x \, dx = \lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \ln x \, dx$
Step 3: Find the antiderivative $\int \ln x \, dx = x \ln x - x + C$
Step 4: Apply the limits $\lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \ln x \, dx = \lim_{\epsilon \to 0^+} [(x \ln x - x)]{\epsilon}^1$ $= \lim{\epsilon \to 0^+} [(1 \ln 1 - 1) - (\epsilon \ln \epsilon - \epsilon)]$ $= -1 - \lim_{\epsilon \to 0^+} (\epsilon \ln \epsilon - \epsilon)$
Since $\lim_{\epsilon \to 0^+} \epsilon \ln \epsilon = 0$ (which can be verified using L’Hôpital’s rule): $\int_0^1 \ln x \, dx = -1$
Therefore, the improper integral converges to -1.
Example 5: Integral with Oscillatory Behavior
Determine if $\int_1^{+\infty} \sin\left(\frac{1}{x}\right) \, dx$ converges.
Solution: Step 1: Use integration by parts Let $u = \sin\left(\frac{1}{x}\right)$ and $dv = dx$ Then $du = -\frac{1}{x^2} \cos\left(\frac{1}{x}\right) \, dx$ and $v = x$
$\int \sin\left(\frac{1}{x}\right) \, dx = x \sin\left(\frac{1}{x}\right) - \int x \cdot \left(-\frac{1}{x^2}\right) \cos\left(\frac{1}{x}\right) \, dx$ $= x \sin\left(\frac{1}{x}\right) + \int \frac{1}{x} \cos\left(\frac{1}{x}\right) \, dx$
Let $t = \frac{1}{x}$, then $dx = -\frac{1}{t^2} \, dt$ $\int \frac{1}{x} \cos\left(\frac{1}{x}\right) \, dx = \int \cos t \, dt = \sin t + C = \sin\left(\frac{1}{x}\right) + C$
Therefore: $\int \sin\left(\frac{1}{x}\right) \, dx = x \sin\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) + C$
Step 2: Evaluate the limits $\int_1^{+\infty} \sin\left(\frac{1}{x}\right) \, dx = \lim_{R \to \infty} \left[ x \sin\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \right]1^{R}$ $= \lim{R \to \infty} \left[ R \sin\left(\frac{1}{R}\right) + \sin\left(\frac{1}{R}\right) - \sin(1) - \sin(1) \right]$
As $R \to \infty$, $\sin\left(\frac{1}{R}\right) \sim \frac{1}{R}$, so $R \sin\left(\frac{1}{R}\right) \to 1$ and $\sin\left(\frac{1}{R}\right) \to 0$
Therefore: $\int_1^{+\infty} \sin\left(\frac{1}{x}\right) \, dx = 1 - 2\sin(1)$
The integral converges to a finite value.
Strategy for Solving Improper Integral Problems
-
Identify the type of improper integral:
- Infinite limit(s) of integration
- Integrand with vertical asymptote(s)
- Both infinity and vertical asymptote
-
For convergence analysis:
- Use direct evaluation if the antiderivative is known and the limit can be computed
- Apply comparison tests for functions that are difficult to integrate
- Use asymptotic comparison for complex functions
- Apply the p-test for power functions
-
For evaluating convergent improper integrals:
- Replace with the appropriate limit definition
- Find the antiderivative
- Carefully evaluate the limit
- If direct evaluation is difficult, consider numerical methods
-
Special cases:
- For oscillatory integrals, consider integration by parts or special techniques
- For rational functions, use partial fractions
- For functions with absolute values, split the domain appropriately
-
Verification:
- Double-check your work, especially limit evaluations
- Ensure proper handling of indeterminate forms
- Use alternative methods to confirm results when possible
See:
Exercises
1. Determine Convergence
Establish if the following integrals converge:
-
$\int_{4}^{+\infty} \frac{x+1}{x^2(x-3)} dx$
-
$\int_{1}^{+\infty} \frac{x - \arctan x}{x^3} dx$ (using asymptotic comparison with $g(x) = \frac{1}{x^2}$)
-
$\int_e^{\infty} \frac{dx}{x \ln x}$
-
$\int_0^1 \frac{dx}{e^{\sqrt{x}}-1}$
-
$\int_1^{+\infty} \sin\left(\frac{1}{x}\right) dx$
2. Compute Converging Improper Integrals
Establish if the following integrals converge and compute them:
-
$\int_0^1 \ln x dx$
-
$\int_0^1 \frac{1}{\sqrt{1-x^2}}dx$
-
$\int_0^1 \frac{\sqrt{x}}{x^2-4x}dx$
-
$\int_0^1 \frac{\ln x}{x\sqrt{x}}dx$
-
$\int_0^{+\infty} \frac{x}{1+x^2}dx$
-
$\int_{-\infty}^{+\infty} \frac{1}{1+x^2}dx$
-
$\int_1^e \frac{\ln x}{x(1 + 7 \ln x)} dx$ (compute the area beneath the graph)
3. Improper Integrability of Functions
Establish if the following functions are improperly integrable in the given interval:
-
$f(x) = xe^{1/x}$ in $(1, +\infty)$
-
$f(x) = x^2e^{-x^3}$ in $[1, +\infty)$
-
$f(x) = \frac{x-1}{x^2+1}$ in $[2, +\infty)$
-
$f(x) = \frac{1+\cos x}{\sqrt[4]{(1-x^3)^3}}$ in $[0,1]$
-
$f(x) = \frac{e^{-x}}{\sin(1/x)}$ in $[2,+\infty)$
-
$f(x) = \frac{1}{3+x^2}$ in $[1,+\infty)$
-
$f(t) = \frac{3-t}{t^2+1}$ in $[2,+\infty)$