Improper integrals

Pasted image 20250220194634.png

Definition and Types

Improper integrals are definite integrals that involve either:

  1. Infinite limits of integration, or
  2. An integrand that becomes infinite within the limits of integration

Type 1: Infinite Limits of Integration

Case 1: Integration to Infinity

\[\int_a^{\infty} f(x) \, dx = \lim_{R \to \infty} \int_a^{R} f(x) \, dx\]

Case 2: Integration from Negative Infinity

\[\int_{-\infty}^{a} f(x) \, dx = \lim_{R \to \infty} \int_{-R}^{a} f(x) \, dx\]

Case 3: Integration over the Entire Real Line

\(\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{a} f(x) \, dx + \int_a^{\infty} f(x) \, dx\) for any value of $a$ where $f$ is defined.

Type 2: Integrand with a Vertical Asymptote

Case 1: Asymptote at the Lower Limit

\(\int_a^{b} f(x) \, dx = \lim_{\epsilon \to 0^+} \int_{a+\epsilon}^{b} f(x) \, dx\) where $f$ has a vertical asymptote at $x = a$.

Case 2: Asymptote at the Upper Limit

\(\int_a^{b} f(x) \, dx = \lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \, dx\) where $f$ has a vertical asymptote at $x = b$.

Case 3: Asymptote at an Interior Point

\(\int_a^{b} f(x) \, dx = \int_a^{c} f(x) \, dx + \int_c^{b} f(x) \, dx = \lim_{\epsilon \to 0^+} \left[ \int_a^{c-\epsilon} f(x) \, dx + \int_{c+\epsilon}^{b} f(x) \, dx \right]\) where $f$ has a vertical asymptote at $x = c$ with $a < c < b$.

Convergence and Divergence

Definition

  • An improper integral converges if the corresponding limit exists and is finite.
  • An improper integral diverges if the limit doesn’t exist or is infinite.

Convergence Theorems

Comparison Test

If $0 \leq f(x) \leq g(x)$ for all $x \geq a$, then:

  1. If $\int_a^{\infty} g(x) \, dx$ converges, then $\int_a^{\infty} f(x) \, dx$ also converges.
  2. If $\int_a^{\infty} f(x) \, dx$ diverges, then $\int_a^{\infty} g(x) \, dx$ also diverges.

Limit Comparison Test

If $f(x) \geq 0$, $g(x) > 0$ for all $x \geq a$, and $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$ where $0 < L < \infty$, then:

  • $\int_a^{\infty} f(x) \, dx$ and $\int_a^{\infty} g(x) \, dx$ both converge or both diverge.

p-Test (for Power Functions)

For $p \in \mathbb{R}$:

  • $\int_1^{\infty} \frac{1}{x^p} \, dx$ converges if $p > 1$
  • $\int_1^{\infty} \frac{1}{x^p} \, dx$ diverges if $p \leq 1$

For integrals with a vertical asymptote at $x = a$:

  • $\int_a^{b} \frac{1}{(x-a)^p} \, dx$ converges if $p < 1$
  • $\int_a^{b} \frac{1}{(x-a)^p} \, dx$ diverges if $p \geq 1$

Absolute Convergence

If $\int_a^{\infty} f(x) \, dx$ converges, then $\int_a^{\infty} f(x) \, dx$ also converges.

Conditional Convergence

An integral $\int_a^{\infty} f(x) \, dx$ is conditionally convergent if it converges but $\int_a^{\infty} f(x) \, dx$ diverges.

Methods for Evaluating Improper Integrals

Direct Evaluation Method

  1. Replace the improper integral with the appropriate limit
  2. Find the antiderivative
  3. Evaluate the limit

For Type 1 (Infinite Limits)

\(\int_a^{\infty} f(x) \, dx = \lim_{R \to \infty} \left[ F(R) - F(a) \right]\) where $F$ is an antiderivative of $f$.

For Type 2 (Vertical Asymptotes)

\(\int_a^{b} f(x) \, dx = \lim_{\epsilon \to 0^+} \left[ F(b) - F(a+\epsilon) \right]\) where $f$ has an asymptote at $x = a$.

Comparison Test for Non-Negative Functions

  1. Find a simpler function $g(x)$ that bounds $f(x)$
  2. Determine if the simpler integral $\int g(x) \, dx$ converges or diverges
  3. Apply the comparison test to draw conclusions about $\int f(x) \, dx$

Asymptotic Comparison

For positive functions $f(x)$ and $g(x)$, if $f(x) \sim g(x)$ as $x \to \infty$ (meaning $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$), then:

  • $\int_a^{\infty} f(x) \, dx$ and $\int_a^{\infty} g(x) \, dx$ both converge or both diverge.

Common Improper Integrals

Standard Convergent Improper Integrals

  • $\int_0^{\infty} e^{-x} \, dx = 1$
  • $\int_0^{\infty} e^{-ax} \, dx = \frac{1}{a}$ for $a > 0$
  • $\int_1^{\infty} \frac{1}{x^p} \, dx = \frac{1}{p-1}$ for $p > 1$
  • $\int_0^{\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$
  • $\int_0^{\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}$

Standard Divergent Improper Integrals

  • $\int_1^{\infty} \frac{1}{x} \, dx$ (diverges logarithmically)
  • $\int_0^1 \frac{1}{x} \, dx$ (diverges logarithmically)
  • $\int_0^1 \frac{1}{x^p} \, dx$ for $p \geq 1$
  • $\int_0^{\infty} \sin x \, dx$ (oscillates)
  • $\int_0^{\infty} \cos x \, dx$ (oscillates)

Worked Examples

Example 1: Infinite Upper Limit

Determine if $\int_{4}^{+\infty} \frac{x+1}{x^2(x-3)} \, dx$ converges.

Solution: Step 1: Decompose into partial fractions \(\frac{x+1}{x^2(x-3)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-3}\)

Solving for coefficients (by multiplying both sides by $x^2(x-3)$ and comparing): \(x+1 = Ax(x-3) + B(x-3) + Cx^2\)

Evaluating at various points:

  • At $x = 0$: $1 = -3B$, so $B = -\frac{1}{3}$
  • At $x = 3$: $4 = 9C$, so $C = \frac{4}{9}$

Comparing coefficients of $x^2$: $0 = A + C$, so $A = -C = -\frac{4}{9}$

Step 2: Check each term for convergence \(\int_{4}^{+\infty} \frac{x+1}{x^2(x-3)} \, dx = \int_{4}^{+\infty} \left( \frac{-4/9}{x} + \frac{-1/3}{x^2} + \frac{4/9}{x-3} \right) \, dx\)

For $\int_{4}^{+\infty} \frac{1}{x} \, dx$: This diverges by the p-test (p = 1).

Since one term diverges, the entire integral diverges.

Example 2: Convergent Integral with Infinite Limit

Establish if $\int_{1}^{+\infty} \frac{x - \arctan x}{x^3} \, dx$ converges using asymptotic comparison.

Solution: Step 1: Analyze the asymptotic behavior As $x \to \infty$, $\arctan x \to \frac{\pi}{2}$, so: \(\frac{x - \arctan x}{x^3} \sim \frac{x - \frac{\pi}{2}}{x^3} \sim \frac{x}{x^3} = \frac{1}{x^2}\)

Step 2: Apply the p-test $\int_{1}^{+\infty} \frac{1}{x^2} \, dx$ converges since $p = 2 > 1$.

Step 3: Verify using limit comparison test \(\lim_{x \to \infty} \frac{x - \arctan x}{x^3} \cdot x^2 = \lim_{x \to \infty} \frac{x - \arctan x}{x}\)

Using L’Hôpital’s rule: \(\lim_{x \to \infty} \frac{x - \arctan x}{x} = \lim_{x \to \infty} \left(1 - \frac{\arctan x}{x}\right) = 1 - \lim_{x \to \infty} \frac{\arctan x}{x}\)

Since $\lim_{x \to \infty} \arctan x = \frac{\pi}{2}$, we get: \(\lim_{x \to \infty} \frac{\arctan x}{x} = \lim_{x \to \infty} \frac{\frac{\pi}{2}}{x} = 0\)

Therefore: \(\lim_{x \to \infty} \frac{x - \arctan x}{x} = 1 - 0 = 1\)

By the limit comparison test, since this limit is finite and positive, and $\int_{1}^{+\infty} \frac{1}{x^2} \, dx$ converges, $\int_{1}^{+\infty} \frac{x - \arctan x}{x^3} \, dx$ also converges.

Example 3: Integral with Vertical Asymptote

Establish if $\int_0^1 \frac{dx}{e^{\sqrt{x}}-1}$ converges.

Solution: Step 1: Identify the behavior near the critical point As $x \to 0^+$, $\sqrt{x} \to 0$, and $e^{\sqrt{x}} \to 1$. Using Taylor series: $e^{\sqrt{x}} - 1 \approx \sqrt{x} + \frac{x}{2} + \ldots \approx \sqrt{x}$ for small $x$.

Step 2: Compare with a known function \(\frac{1}{e^{\sqrt{x}}-1} \sim \frac{1}{\sqrt{x}}\)

Step 3: Apply the p-test for vertical asymptotes $\int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 x^{-1/2} \, dx$ converges since $p = 1/2 < 1$.

Step 4: Verify using limit comparison test \(\lim_{x \to 0^+} \frac{\frac{1}{e^{\sqrt{x}}-1}}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} \frac{\sqrt{x}}{e^{\sqrt{x}}-1}\)

Using L’Hôpital’s rule: \(\lim_{x \to 0^+} \frac{\sqrt{x}}{e^{\sqrt{x}}-1} = \lim_{x \to 0^+} \frac{\frac{1}{2}x^{-1/2}}{e^{\sqrt{x}} \cdot \frac{1}{2}x^{-1/2}} = \lim_{x \to 0^+} \frac{1}{e^{\sqrt{x}}} = 1\)

By the limit comparison test, since this limit is finite and positive, and $\int_0^1 \frac{1}{\sqrt{x}} \, dx$ converges, $\int_0^1 \frac{dx}{e^{\sqrt{x}}-1}$ also converges.

Example 4: Logarithmic Integral

Establish if $\int_0^1 \ln x \, dx$ converges.

Solution: Step 1: Identify the behavior near x = 0 As $x \to 0^+$, $\ln x \to -\infty$, so this is an improper integral with a vertical asymptote at the lower limit.

Step 2: Evaluate using the definition $\int_0^1 \ln x \, dx = \lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \ln x \, dx$

Step 3: Find the antiderivative $\int \ln x \, dx = x \ln x - x + C$

Step 4: Apply the limits $\lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \ln x \, dx = \lim_{\epsilon \to 0^+} [(x \ln x - x)]{\epsilon}^1$ $= \lim{\epsilon \to 0^+} [(1 \ln 1 - 1) - (\epsilon \ln \epsilon - \epsilon)]$ $= -1 - \lim_{\epsilon \to 0^+} (\epsilon \ln \epsilon - \epsilon)$

Since $\lim_{\epsilon \to 0^+} \epsilon \ln \epsilon = 0$ (which can be verified using L’Hôpital’s rule): $\int_0^1 \ln x \, dx = -1$

Therefore, the improper integral converges to -1.

Example 5: Integral with Oscillatory Behavior

Determine if $\int_1^{+\infty} \sin\left(\frac{1}{x}\right) \, dx$ converges.

Solution: Step 1: Use integration by parts Let $u = \sin\left(\frac{1}{x}\right)$ and $dv = dx$ Then $du = -\frac{1}{x^2} \cos\left(\frac{1}{x}\right) \, dx$ and $v = x$

$\int \sin\left(\frac{1}{x}\right) \, dx = x \sin\left(\frac{1}{x}\right) - \int x \cdot \left(-\frac{1}{x^2}\right) \cos\left(\frac{1}{x}\right) \, dx$ $= x \sin\left(\frac{1}{x}\right) + \int \frac{1}{x} \cos\left(\frac{1}{x}\right) \, dx$

Let $t = \frac{1}{x}$, then $dx = -\frac{1}{t^2} \, dt$ $\int \frac{1}{x} \cos\left(\frac{1}{x}\right) \, dx = \int \cos t \, dt = \sin t + C = \sin\left(\frac{1}{x}\right) + C$

Therefore: $\int \sin\left(\frac{1}{x}\right) \, dx = x \sin\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) + C$

Step 2: Evaluate the limits $\int_1^{+\infty} \sin\left(\frac{1}{x}\right) \, dx = \lim_{R \to \infty} \left[ x \sin\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \right]1^{R}$ $= \lim{R \to \infty} \left[ R \sin\left(\frac{1}{R}\right) + \sin\left(\frac{1}{R}\right) - \sin(1) - \sin(1) \right]$

As $R \to \infty$, $\sin\left(\frac{1}{R}\right) \sim \frac{1}{R}$, so $R \sin\left(\frac{1}{R}\right) \to 1$ and $\sin\left(\frac{1}{R}\right) \to 0$

Therefore: $\int_1^{+\infty} \sin\left(\frac{1}{x}\right) \, dx = 1 - 2\sin(1)$

The integral converges to a finite value.

Strategy for Solving Improper Integral Problems

  1. Identify the type of improper integral:
    • Infinite limit(s) of integration
    • Integrand with vertical asymptote(s)
    • Both infinity and vertical asymptote
  2. For convergence analysis:
    • Use direct evaluation if the antiderivative is known and the limit can be computed
    • Apply comparison tests for functions that are difficult to integrate
    • Use asymptotic comparison for complex functions
    • Apply the p-test for power functions
  3. For evaluating convergent improper integrals:
    • Replace with the appropriate limit definition
    • Find the antiderivative
    • Carefully evaluate the limit
    • If direct evaluation is difficult, consider numerical methods
  4. Special cases:
    • For oscillatory integrals, consider integration by parts or special techniques
    • For rational functions, use partial fractions
    • For functions with absolute values, split the domain appropriately
  5. Verification:
    • Double-check your work, especially limit evaluations
    • Ensure proper handling of indeterminate forms
    • Use alternative methods to confirm results when possible

See:

Exercises

1. Determine Convergence

Establish if the following integrals converge:

  1. $\int_{4}^{+\infty} \frac{x+1}{x^2(x-3)} dx$

  2. $\int_{1}^{+\infty} \frac{x - \arctan x}{x^3} dx$ (using asymptotic comparison with $g(x) = \frac{1}{x^2}$)

  3. $\int_e^{\infty} \frac{dx}{x \ln x}$

  4. $\int_0^1 \frac{dx}{e^{\sqrt{x}}-1}$

  5. $\int_1^{+\infty} \sin\left(\frac{1}{x}\right) dx$

2. Compute Converging Improper Integrals

Establish if the following integrals converge and compute them:

  1. $\int_0^1 \ln x dx$

  2. $\int_0^1 \frac{1}{\sqrt{1-x^2}}dx$

  3. $\int_0^1 \frac{\sqrt{x}}{x^2-4x}dx$

  4. $\int_0^1 \frac{\ln x}{x\sqrt{x}}dx$

  5. $\int_0^{+\infty} \frac{x}{1+x^2}dx$

  6. $\int_{-\infty}^{+\infty} \frac{1}{1+x^2}dx$

  7. $\int_1^e \frac{\ln x}{x(1 + 7 \ln x)} dx$ (compute the area beneath the graph)

3. Improper Integrability of Functions

Establish if the following functions are improperly integrable in the given interval:

  1. $f(x) = xe^{1/x}$ in $(1, +\infty)$

  2. $f(x) = x^2e^{-x^3}$ in $[1, +\infty)$

  3. $f(x) = \frac{x-1}{x^2+1}$ in $[2, +\infty)$

  4. $f(x) = \frac{1+\cos x}{\sqrt[4]{(1-x^3)^3}}$ in $[0,1]$

  5. $f(x) = \frac{e^{-x}}{\sin(1/x)}$ in $[2,+\infty)$

  6. $f(x) = \frac{1}{3+x^2}$ in $[1,+\infty)$

  7. $f(t) = \frac{3-t}{t^2+1}$ in $[2,+\infty)$