Derivatives
Constant Quotient
Definition and Notation
The derivative of a function $f(x)$ at a point $x = a$ is defined as:
\[f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}\]Alternative notations for the derivative of $y = f(x)$ include:
- $f’(x)$
- $\frac{dy}{dx}$
- $\frac{d}{dx}[f(x)]$
- $y’$
- $D_x[f(x)]$
Basic Differentiation Rules
Constant Rule
If $f(x) = c$ (a constant), then: \(f'(x) = 0\)
Power Rule
If $f(x) = x^n$, then: \(f'(x) = nx^{n-1}\)
This applies for any real number $n$.
Constant Multiple Rule
If $f(x) = c \cdot g(x)$, then: \(f'(x) = c \cdot g'(x)\)
Sum and Difference Rule
If $f(x) = g(x) \pm h(x)$, then: \(f'(x) = g'(x) \pm h'(x)\)
Product and Quotient Rules
Product Rule
If $f(x) = g(x) \cdot h(x)$, then: \(f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)\)
Mnemonic: “The derivative of the first times the second, plus the first times the derivative of the second.”
Quotient Rule
If $f(x) = \frac{g(x)}{h(x)}$, then: \(f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{[h(x)]^2}\)
Mnemonic: “The derivative of the numerator times the denominator, minus the numerator times the derivative of the denominator, all over the denominator squared.”
Chain Rule
If $f(x) = g(h(x))$, then: \(f'(x) = g'(h(x)) \cdot h'(x)\)
In Leibniz notation: \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\)
Alternative Form
If $y = f(u)$ and $u = g(x)$, then: \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\)
Derivatives of Common Functions
Exponential Functions
- $(e^x)’ = e^x$
- $(a^x)’ = a^x \ln(a)$
Logarithmic Functions
- $(\ln x)’ = \frac{1}{x}$
- $(\log_a x)’ = \frac{1}{x \ln(a)}$
Trigonometric Functions
- $(\sin x)’ = \cos x$
- $(\cos x)’ = -\sin x$
- $(\tan x)’ = \sec^2 x$
- $(\cot x)’ = -\csc^2 x$
- $(\sec x)’ = \sec x \tan x$
- $(\csc x)’ = -\csc x \cot x$
Inverse Trigonometric Functions
- $(\arcsin x)’ = \frac{1}{\sqrt{1-x^2}}$
- $(\arccos x)’ = -\frac{1}{\sqrt{1-x^2}}$
- $(\arctan x)’ = \frac{1}{1+x^2}$
- $(\text{arccot } x)’ = -\frac{1}{1+x^2}$
-
$(\text{arcsec } x)’ = \frac{1}{ x \sqrt{x^2-1}}$ -
$(\text{arccsc } x)’ = -\frac{1}{ x \sqrt{x^2-1}}$
Hyperbolic Functions
- $(\sinh x)’ = \cosh x$
- $(\cosh x)’ = \sinh x$
- $(\tanh x)’ = \text{sech}^2 x$
- $(\coth x)’ = -\text{csch}^2 x$
- $(\text{sech } x)’ = -\text{sech } x \tanh x$
- $(\text{csch } x)’ = -\text{csch } x \coth x$
Implicit Differentiation
For an equation relating $x$ and $y$ where $y$ is not explicitly defined as a function of $x$:
- Differentiate both sides of the equation with respect to $x$
- Remember that when differentiating $y$ terms, apply the chain rule: $\frac{d}{dx}[y^n] = n \cdot y^{n-1} \cdot \frac{dy}{dx}$
- Solve for $\frac{dy}{dx}$
Example
For the equation $x^2 + y^2 = 25$:
- Differentiate both sides: $2x + 2y \cdot \frac{dy}{dx} = 0$
- Solve for $\frac{dy}{dx}$: $\frac{dy}{dx} = -\frac{x}{y}$
Higher-Order Derivatives
Second Derivative
The second derivative is the derivative of the first derivative: \(f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right)\)
Higher Derivatives
Similarly, we can define third, fourth, and higher derivatives: \(f'''(x) = \frac{d^3y}{dx^3}, \quad f^{(4)}(x) = \frac{d^4y}{dx^4}, \ldots, \quad f^{(n)}(x) = \frac{d^ny}{dx^n}\)
Tangent Line Equation
The equation of the tangent line to the curve $y = f(x)$ at the point $(a, f(a))$ is: \(y - f(a) = f'(a)(x - a)\)
Steps for Differentiation
- Identify the type of function: Is it a polynomial, rational, trigonometric, exponential, logarithmic, or a composition?
- Select the appropriate rule(s): Decide which differentiation rules apply.
- Apply the rules step by step: Break down complex functions into simpler components.
- Simplify the result: Combine like terms and simplify algebraic expressions.
Worked Examples
Example 1: Product Rule
Find the derivative of $f(t) = \sin\left(\frac{t-3}{t}\right) + 2t \sin(2t+1)$
Solution: $f(t) = \sin\left(\frac{t-3}{t}\right) + 2t \sin(2t+1)$
Using the sum rule, differentiate each term separately:
For the first term, $\sin\left(\frac{t-3}{t}\right)$:
- Let $u = \frac{t-3}{t}$
- $\frac{du}{dt} = \frac{t \cdot 1 - (t-3) \cdot 1}{t^2} = \frac{t - t + 3}{t^2} = \frac{3}{t^2}$
- Using the chain rule: $\frac{d}{dt}[\sin(u)] = \cos(u) \cdot \frac{du}{dt} = \cos\left(\frac{t-3}{t}\right) \cdot \frac{3}{t^2}$
For the second term, $2t \sin(2t+1)$:
- Use the product rule: $\frac{d}{dt}[2t \sin(2t+1)] = 2 \cdot \sin(2t+1) + 2t \cdot \cos(2t+1) \cdot 2$
- Simplify: $2 \sin(2t+1) + 4t \cos(2t+1)$
Combining both terms: $f’(t) = \cos\left(\frac{t-3}{t}\right) \cdot \frac{3}{t^2} + 2 \sin(2t+1) + 4t \cos(2t+1)$
Example 2: Quotient Rule
Find the derivative of $h(s) = \frac{s^2-6s+5}{s-3}$
Solution: $h(s) = \frac{s^2-6s+5}{s-3}$
Using the quotient rule: $h’(s) = \frac{(2s-6)(s-3) - (s^2-6s+5)(1)}{(s-3)^2}$
Expanding the numerator: $h’(s) = \frac{2s^2-6s-6s+18 - s^2+6s-5}{(s-3)^2}$
Simplifying: $h’(s) = \frac{s^2-6s+13}{(s-3)^2}$
Example 3: Chain Rule
Find the derivative of $\psi(x) = \frac{(x+1)^3}{(x-1)^2}$
Solution: $\psi(x) = \frac{(x+1)^3}{(x-1)^2}$
Using the quotient rule: $\psi’(x) = \frac{3(x+1)^2(1)(x-1)^2 - (x+1)^3 \cdot 2(x-1)(1)}{(x-1)^4}$
Simplifying: $\psi’(x) = \frac{3(x+1)^2(x-1)^2 - 2(x+1)^3(x-1)}{(x-1)^4}$
Factor out $(x+1)^2(x-1)$: $\psi’(x) = \frac{(x+1)^2x-1}{(x-1)^4}$
Further simplify: $\psi’(x) = \frac{(x+1)^2[3x-3 - 2x-2]}{(x-1)^3}$
Final simplification: $\psi’(x) = \frac{(x+1)^2(x-5)}{(x-1)^3}$
Application to Optimization Problems
- Identify the function to be maximized or minimized.
- Find the critical points by setting the derivative equal to zero and solving.
- Determine the nature of critical points using the second derivative test.
- Evaluate the function at critical points and endpoints (if applicable).
- Compare the values to find the maximum or minimum.
See
- Critical Points
- Higher Derivatives
- Chain Rule for Composite Functions
- Product Rule
- Quotient Rule
- Power Rule
- Rules of Derivation
Exercises
-
Compute the derivatives of the following functions and the equation of the tangent line in the given point (if present): a) $\phi(t) = \sin\left(\frac{t-3}{t}\right) + 2t\sin(2t+1)$ b) $\psi(x) = \frac{(x+1)^3}{(x-1)^2}$, $P = (0,1)$ c) $g(z) = \frac{\pi}{4\pi^2+z^3}$, $P = (0,1/4\pi)$ d) $f(x) = e^{3x}+2$, $P = (1,e^3+2)$
-
(Review Exercises) Compute the derivatives of the following functions and the equation of the tangent line in the given point (if present): a) $\phi(t) = \sin\left(\frac{t-3}{t}\right) + 2t\sin(2t+1)$ b) $\psi(x) = \frac{(x+1)^3}{(x-1)^2}$, $P = (0,1)$ c) $g(z) = \frac{\pi}{4\pi^2+z^3}$, $P = (0,1/4\pi)$ d) $f(x) = e^{3x}+2$, $P = (1,e^3+2)$
-
Written test 2022-4-18, Question 2b: Find $f’(x) = \frac{x^2+2-2x(x-2)}{(x^2+2)^2} = \frac{-x^2+4x+2}{(x^2+2)^2}$
-
Exercises (3-6 April): a) Question 1: Compute the equation of the tangent line to the graph of functions at given points. b) Question 2: Compute the derivative of various functions and the equation of the tangent line at given points.
-
Compute the derivative of the following functions and the equation of the tangent line in the given point (if present): a) $f(x) = \frac{1}{x+1}$ b) $f(x) = \frac{1}{x^2+1}$ c) $f(x) = e^{3x}+2$, $P = (1, e^3+2)$ d) $g(z) = \frac{z^5+4z^3}{15}$ e) $h(s) = \frac{s^2-6s+5}{s-3}$ f) $\phi(t) = \sin\left(\frac{t-3}{t}\right) + 2t\sin(2t+1)$ g) $\psi(x) = \frac{(x+1)^3}{(x-1)^2}$ h) $b(z) = \frac{\pi}{4\pi^2+z^3}$ i) $g(x) = \sqrt{\frac{\sin x - x}{\cos x}}$ j) $f(t) = t + \frac{\sqrt{2+t^2}}{t-\sqrt{2+t^2}}$
-
Compute $g’(1)$ taking into account that $f(1) = 1$ and $f’(1) = 3$: a) $g(x) = f^3(x^3)$
-
Compute the following derivatives: a) $\frac{d}{dx}[2f(3f(x))]$ b) $\frac{d}{dx}[e^{[f(x)]^{2+5}}]$
-
Find (if there are) the global maximum and the global minimum of the following functions in the given intervals: a) $f(x) = x - \arctan x$ $(-\infty,+\infty)$ b) $f(x) = \sin x - \cos x$ $[0, 2\pi]$ c) $f(x) = \frac{x}{x^2+1}$ $[-2, 3]$